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1. Introduction

In the last few decades a renewed interest was devoted to pioneering works of Lie and
Cartan, in particular for what concern the application of group theory to the differential
equations and the symmetry reduction theory.

It is well known that the knowledge of a solvable k-dimensional algebra of symmetries,
for a k-order ordinary differential equation (ODE) E , guarantees that E can be completely
integrated by quadratures [14, 15, 29]. On the other hand, finding all local symmetries for
a given ODE is not always possible and one may encounter equations which are integrable
by quadratures but with a lack of local symmetries. Examples of this kind are well known
in recent literature, see for example [8–10, 17, 18, 22]. In fact local symmetries (classical or
higher) of a k-order ODE E in the unknown u are described by the solutions of a linear
partial differential equation (PDE) depending on the derivative of u up to the order k − 1.
Since the general solution of this PDE cannot be found unless one already knows the general
solution of E , one usually only searches for particular solutions depending on derivative of u

up to order k−2. Therefore, in practice, E could not be completely reduced by quadratures
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if it does not admit a solvable k-dimensional algebra of such computable symmetries. For
these reasons local symmetries are sometimes inadequate and various attempts for a more
effective symmetry-reduction method have been proposed. Among these, in this paper we
consider the notion of λ-symmetry introduced in [22] and that of solvable structure intro-
duced in [4, 27]. We propose here a reduction method which takes advantage of both notions.

The relevance of λ-symmetries is due to the fact that many equations, which do not
possess Lie point symmetries, admit λ-symmetries and can be reduced as in the case of
standard symmetries [13, 16, 17, 21, 23, 26]. Despite their name, however, λ-symmetries are
neither Lie point nor higher symmetries.

As shown in [10], λ-symmetries of an ODE E can be interpreted as shadows of some
nonlocal symmetries. In practice it means that, by embedding E in a suitable system E ′

determined by the function λ, any λ-symmetry of E can be recovered as a local symmetry
of E ′.

This interpretation of λ-symmetries has many advantages and will be one of the main
ingredients of this paper.

For what concerns the notion of solvable structure, this was introduced around 1990 by
Basarab-Horwath and further investigated by Sherring and Prince in the papers [4–6, 27].
Solvable structures are defined by systems of vector fields, not necessarily symmetries,
which provide a noteworthy generalization of the standard symmetry reduction method for
completely integrable distributions.

Despite their relevance, however, solvable structures have not received so much attention
and only few papers have been published on the subject (see [11,19]). In part, this was cer-
tainly due to computational problems with the determining equations of solvable structures.
In fact, these equations are in general very complicated and fully nonlinear. Nevertheless,
in some cases and making use of modern symbolic manipulation packages (see [11]), one
can overcome these difficulties and hence succeed in the application of the method.

A noteworthy simplification, in practice, may come by computing solvable structures
which are adapted to admitted symmetry algebras, if any. Hence one certainly takes advan-
tage of the presence of any kind of symmetry. In particular, one can include the nonlocal
symmetries corresponding to λ-symmetries. This kind of (nonlocal) solvable structures were
already considered in the paper [11]; in this paper we mainly review the results of [11] and
further provide more examples of the resulting reduction scheme.

In our opinion, solvable structures deserve much more attention and we hope that this
paper, together with [11], will strengthen the current research interests in this topic. The
paper is organized as follows. In Sec. 2, we collect all notations and basic facts we need
on symmetries (local and nonlocal) of differential equations. In particular we recall the
interpretation of λ-symmetries as shadows of nonlocal symmetries. In Sec. 3, we recall
the basic facts we need on solvable structures in a form which is suitable to our further
discussion. Then, in Sec. 4, we discuss our reduction scheme of ODEs via nonlocal solvable
structures. In particular, we collect here some examples which illustrate the application of
the method.

2. Preliminaries

In this section we collect some notations and basic facts we need in the paper. The reader
is referred to [7, 8, 15,24,25,28,29] for further details.
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2.1. ODEs as submanifolds of jet spaces

Let M and E be smooth manifolds and π : E → M be a q-dimensional bundle. We
denote by πk : Jk(π) → M the k-order jet bundle associated to π and by jk(s) the k-order
jet prolongation of a section s of π. Since in this paper we are only concerned with the
case dim M = 1, we assume that M and E have local coordinates x and (x, u1, . . . , uq),
respectively. Correspondingly, the induced natural coordinates on Jk(π) will be (x, ua

i ),
1 ≤ a ≤ q, i = 0, 1, . . . , k, where ua

i denotes the ith derivative of ua. Moreover, when no
confusion arises, Einstein summation convention over repeated indices will be used.

The k-order jet space Jk(π) is a manifold equipped with the smooth distribution Ck of
tangent planes to graphs of k-order jet prolongations jk(s). This is the contact (or Cartan)
distribution of Jk(π).

In this framework a k-th order system of differential equations can be regarded as a
submanifold E ⊂ Jk(π) and any solution of the system is a section of π whose k-order
prolongation is an integral manifold of the restriction Ck|E of the contact distribution to E .
In this paper we will deal only with (systems of) ordinary differential equations E which
are in normal form and not underdetermined.

Analogously to Jk(π), we can define the bundle of infinite jets J∞(π): this is an infinite
dimensional manifold with induced coordinates (x, ua

i ), 1 ≤ a ≤ q, i = 0, 1, . . . . The set
D(π) of vector fields on J∞(π) has the structure of a Lie algebra, with respect to the usual
Lie bracket [12, 24, 29]. Moreover one can also define a contact distribution C on J∞(π),
generated by the total derivative operator

Dx = ∂x + ua
i+1∂ua

i
.

Notice that C is the annihilator space of the contact forms θa
s = dua

s −ua
s+1dx, i.e. the space

of vector fields such that X� θa
s = 0 ∀ a, s (here � denotes the insertion operator).

Given a kth order differential equation E = {F = 0}, the lth prolongation of E is the
submanifold E(l) := {Ds

x(F ) = 0 : s = 0, 1, . . . , l}. Analogously, we define the infinite
prolongation E(∞).

2.2. Local symmetries

Given a smooth distribution D on Jk(π), a vector field X defined on Jk(π) is an infinitesimal
symmetry of D if and only if LXD ⊆ D, where LX denotes the Lie derivative along X. The
infinitesimal symmetries of Ck are called Lie symmetries of Jk(π). These symmetries can be
divided in two classes (see [24,29]): Lie point symmetries, which are obtained by prolonging
vector fields X on E, and Lie contact symmetries, which are obtained by prolonging vector
fields X on J1(π).

By definition, symmetries of Ck which are tangent to E are called classical symmetries
of E .

An analogous geometric picture holds on the infinite jet spaces. However, contrary to
the case of finite order jet spaces, symmetries of C cannot always be recovered by infinite
prolongations of Lie symmetries. In fact it can be proved that X = ξ∂x + ηa

i ∂ua
i

is an
infinitesimal symmetry of C if and only if ξ, ηa ∈ F(π) are arbitrary functions and

ηa
i = Dx(ηa

i−1) − ua
i Dx(ξ), ηa

0 = ηa.
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Hence, X is the infinite prolongation of a Lie point (or contact) symmetry iff ξ, ηa
0 are

functions on E (or J1(π), respectively).
On J∞(π), symmetries X of C which are tangent to E(∞) are called higher symmetries

of E and are determined by the condition X(F )|E(∞) = 0.
In particular in this paper we only consider symmetries in the so called evolutive form,

i.e., symmetries of the form X = Di
x(ϕa)∂ua

i
, ϕa := ηa − ua

1ξ. The functions ϕa are called
the generating functions (or characteristics) of X. Moreover, for the applications we are
interested in, we only need to consider symmetries of C which are tangent to E(∞). This
choice turns out to be also convenient since it noteworthy simplifies computations (see [29]
and [2] fore more details and other aspects of ∞-jets theory).

2.3. Nonlocal symmetries and λ-symmetries

In recent years many authors have proposed various generalizations of notion of symmetry
and some new classes of symmetries have been introduced. Among these generalizations
there are those introduced by Muriel and Romero in [22] and known as λ-symmetries.

In our opinion (see [10]) a good framework to deal with many of these generalizations
is the nonlocal setting. We follow here the approach to nonlocality based on the theory of
coverings (see [20] and also [29]). However, since we only deal with ODEs and in this paper
we do not want to go into geometrical details, our approach will be drastically simplified.
The interested reader is referred to [29] for the general theory of coverings and nonlocal
symmetries.

Roughly speaking, given a k-th order ODE

E := {uk = f(x, u, u1, . . . , uk−1)}, (2.1)

a one-dimensional covering for E is the infinite prolongation (E ′)∞ of a system E ′ of
the form {

uk = f(x, u, u1, . . . , uk−1),

w1 = H(x, u, u1, w)
(2.2)

involving a new variable w.
Nonlocal symmetries of E are the symmetries of the system (E ′)∞ and they have

the form

Y = ξ∂x + ηi∂ui + ψi∂wi (2.3)

with ηi = D̃x(ηi−1)− D̃x(ξ)ui and ψi = D̃x(ψi−1)−wiD̃x(ξ), where D̃x = ∂x + u1∂u + · · ·+
f∂uk−1

+ H∂w is the restriction to (E ′)∞ of the total derivative operator.
In this paper we limit to a particular kind of nonlocal symmetry occurring in literature,

which is known as λ-symmetry.
Despite their name, λ-symmetries are neither Lie symmetries nor higher symmetries

of E . Nevertheless, as discussed in [10], λ-symmetries can be interpreted as shadows of
nonlocal symmetries. More precisely, E admits a λ-symmetry X iff E ′ = {uk = f,w1 = λ},
with λ ∈ C∞(E), admits a (higher) symmetry with generating functions of the form ϕα =
ewϕα

0 (x, u, u1, . . . , uk−1), α = 1, 2.
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3. Solvable Structures

In this section we will recall basic definitions and facts on (local) solvable structures in the
form we need in our study. The reader is referred to [4, 5] and [27] for further details.

The original purpose of solvable structures was to generalize the integrating factor
approach and the classical theorem concerning reduction of order of ODEs possessing a
solvable algebra of point symmetries.

Since in this paper we restrict our attention to the integration of 1-dimensional distri-
butions, we will summarize the results of [4] and [5,27] only in this case.

Given a 1-dimensional distribution D = 〈Z〉, on an n-dimensional manifold N , the
definition of a solvable structure for D is the following

Definition 1. The vector fields {Y1, . . . , Yn−1} on N form a solvable structure for D = 〈Z〉
if and only if, denoting D0 = D and Dh = 〈Z, Y1, . . . , Yh〉, the following two conditions are
satisfied:

(i) Dn−1 = TN ;
(ii) LYh

Dh−1 ⊂ Dh−1, ∀h ∈ {1, . . . , n − 1}.
The main difference with the definition of a solvable symmetry algebra of D is that

the fields belonging to a solvable structure do not need to be symmetries for D. This fact
represents an advantage since it gives more freedom in the choice of the fields one can use
in the integration of D.

Remark 1. It is straightforward, by the definition above, that in principle a solvable
structure for D always exists in a neighborhood of a nonsingular point for D. In fact,
if {xi} is a local chart on N such that Z = ∂x1 , one can simply consider the solvable
structure generated by ∂xj , j = 2, . . . , n. This structure is in particular an Abelian algebra
of symmetries for D. Nevertheless, for a given distribution D, it is difficult to find explicitly
such a local chart.

In the case of 1-dimensional distributions, the main result of [4] can be stated as follows

Proposition 1. Let {Y1, . . . , Yn−1} be a solvable structure for a 1-dimensional distribution
D = 〈Z〉 on an orientable n-dimensional manifold N . Then, for any given volume form Ω
on N, D can be described as the annihilator space of the system of 1-forms {ω1, . . . , ωn−1}
defined as

ωi =
1
Δ

(Y1� · · ·�Ŷi� · · ·�Yn−1�Z�Ω), (3.1)

where the hat denotes omission of the corresponding field, � denotes the insertion operator
and Δ is the function defined by

Δ = Y1�Y2� · · ·�Yn−1�Z�Ω.

Moreover, one has that

dωn−1 = 0,

dωi = 0 mod{ωi+1, . . . , ωn−1}
for any i ∈ {1, . . . , n − 2}.
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The reader is referred to [4] or [5] for the proof.
It follows that, under the assumptions of this proposition, D can be completely integrated

by quadratures (at least locally). In fact, in view of dωn−1 = 0, locally ωn−1 = dIn−1 for
some smooth function In−1. Now, since dωn−2 = 0 mod{ωn−1}, ωn−2 is closed on the
level manifolds of In−1. Then, iterating this procedure, it is possible to compute all the
integrals {I1, . . . , In−1} of D and eventually find its (local) integral manifolds in implicit
form {I1 = c1, . . . , In−1 = cn−1}.

Proposition 1 can also be applied to the integration of ODEs. In fact, in view of above
discussion, one can think of an ODE E of the form (2.1) as a manifold equipped with
the 1-dimensional distribution D = 〈Dx〉, where Dx = ∂x + u1∂u + · · · + f∂uk−1

is the
restriction to E of the total derivative operator. In particular, equation E can be seen as a
(k + 1)-dimensional submanifold of Jk(π) naturally equipped with the volume form

Ω = dx ∧ du ∧ · · · ∧ duk−1, (3.2)

where ∧ denotes the usual wedge product.
Then, by applying Proposition 1 to ODEs one readily gets the following:

Proposition 2. Let {Y1, . . . , Yk} be a solvable structure for the 1-dimensional distribution
D = 〈Dx〉 on E defined by (2.1). Then E is integrable by quadratures and the general solution
of E can be obtained in implicit form by subsequently integrating the system of one forms
ωk, . . . , ω1, in the given order.

4. Applications of Solvable Structures in the Integration of ODEs
with a Lack of Lie Point Symmetries

The main point of Proposition 2 is that the knowledge of a solvable structure for an ODE
E allows one to completely integrate it, even though E admits only a one dimensional
symmetry algebra. However, we have already remarked that finding solvable structures
is not always easy and in practice a noteworthy simplification may come by computing
solvable structures adapted to an admitted symmetry algebra G, if any. In fact, as discussed
in [11], under this assumption the determining equation of a solvable structure extending
G become more reasonable. It follows that one certainly takes advantage of the presence of
any kind of symmetry. In particular one can include the nonlocal symmetries corresponding
to λ-symmetries and one can integrate, for example, second order ODEs which admits λ-
symmetries but without Lie point symmetries. In this case, if Y is a nonlocal symmetry
corresponding to a λ-symmetry, one has [∂w, Y ] = Y and it suffices to search for solvable
structures which extend the 2-dimensional algebra spanned by ∂w and Y .

On the other hand, if one considers a general covering system E ′, it is not true in general
that E ′ inherits the local symmetries of E . In fact this only happens if H is a joint invariant
for the local symmetries of E . When ∂wH = 0, however, any algebra G of symmetries for
E is always an algebra of symmetries for the distribution 〈D̃x, ∂w〉. Hence, if the algebra
G = 〈Y1, Y2, . . . , Yr〉R (given by the R-linear span of the fields Y1, . . . , Yr) is solvable, one
may just consider solvable structures which extend {∂w, Y1, Y2, . . . , Yr}.

Another useful simplification may occur when one only knows {Y1, . . . , Yr}, r ≤ k − 1,
and a complete system of joint invariants {γ1, . . . , γk−r} for the distribution Dr. In fact,
using the same notations of Definition 1 and Proposition 1 one has the following (see [11]).
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Proposition 3. Let D = 〈Z〉 be a 1-dimensional distribution and {Y1, . . . , Yr}, r ≤ k − 1,
be such that LYh

Dh−1 ⊂ Dh−1 for any h ∈ {1, . . . , r}. If one knows a complete system of
joint invariants {γ1, . . . , γk−r−1} for the distribution Dr, then D is completely integrable by
quadratures.

4.1. Examples

If an ODE E admits a solvable structure, application of Proposition 1 to the integration
of E makes use of subsequent integration of some systems of closed 1-forms Σi defined on
some manifolds Mi. Here some preliminary remarks, on the practical application of this
procedure, are in order.

In general, due to the topology of manifolds Mi, this procedure returns only local pieces
for solutions of E . Indeed global solutions, in general, must be constructed by glueing
toghether local pieces of solutions defined on corresponding overlapping domains.

Moreover, in practice, one often get into solvable structures which are well defined with
the only exception of a closed thin subset of E . For example, a typical case is that of a
solvable structure generated by a system of vector fields which are linearly dependent on
some lower dimensional submanifold Γ of E . In such a cases, above procedure can only
be applied to compute generic solutions, that is solutions which do not intersect Γ. A
different choice of the solvable structure can be used to describe the missed solutions,
if any.

The following examples provide an insight into the applications of above reduction
scheme. All the examples make use of solvable structures adapted to symmetries of the
given ODE. In particular, since in a solvable structure there is no need to distinguish
between symmetries and other vector fields, all these vector fields will be treated on the
same footing.

Example 1. Consider the ODE E defined by

u2 = − x2

4u3
− u − 1

2u
, (4.1)

where u �= 0.

As shown in [22], (4.1) has no point symmetries but admits a λ-symmetry with λ = x/u2.
If we consider the system ⎧⎪⎪⎨⎪⎪⎩

u2 = − x2

4u3
− u − 1

2u
,

w1 =
x

u2

(4.2)

a nonlocal symmetry Y of (4.1) which corresponds to the λ-symmetry found by Muriel and
Romero in [22] is that generated by the functions ϕ1 = uew and ϕ2 = −2ew. We will search
for solvable structures which extend the nonabelian algebra G = 〈Y1 = Y, Y2 = ∂w〉.

By making use of the Maple 11 routines, it is not difficult to find the most general
solvable structure {Y1, Y2, Y3} for D = 〈Y0〉 (recall that, in this case, Y0 is the total derivative
operator restricted to (4.2)). The determining equations LY3(D2) ⊂ D2, admit the solution
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Y3 = a1∂x + a2∂u + a3∂u1 + a4∂w, with

a1 =
(4u4 + 4u2u2

1 + 4xuu1 + x2)F + 8u((uu1 + x)a2 − u2a3)
8u4 + u2(8u2

1 + 4) + 8xuu1 + 2x2
,

a2, a3, a4 arbitrary functions of (x, u, u1, w) and F an arbitrary function of x+arctan((2uu1+
x)/(2u2)). However, to give an illustration of above integration procedure, we just consider
the following particular solution (with F = 2, a2 = a4 = 0 and a3 = −1/(2u))

Y3 = ∂x − 1
2u

∂u1 .

In this case one can check that Δ = Y1�Y2�Y3�D̄x�Ω vanishes iff

4u2u2
1 + 4xuu1 + 4u4 + x2 = 0. (4.3)

Then {Y1, Y2, Y3} is a solvable structure only at points of E which do not belong to the
submanifold Γ defined by (4.3). We apply above integration procedure to M1 = E\Γ.

Under these assumptions, since both {Y1, Y2, Y3} and {Y1, Y3, Y2} are solvable structures,
one can check that dω3 = dω2 = 0. Hence, one finds ω3 = dI3, ω2 = dI2 with

I2 = 2 ln |u| − w − ln |4u2u2
1 + 4xuu1 + 4u4 + x2|,

I3 = arctan
(

u2u1 + xu/2
u3

)
+ x.

It follows that, when restricted on the level manifolds M2 = M1 ∩ {I2 = c2, I3 = c3}, ω1 is
an exact 1-form and one can check that it is the exterior derivative of the function

I1 =
2ec2u2

cos(x − c3)2
+ 2ec2 ln | cos(c3 − x)| − 2ec2x tan(c3 − x).

Hence one gets that on M1 the general solution of (4.2) can be written in the implicit form
{I1 = c1, I2 = c2, I3 = c3}. However, since one can easily solve with respect to u, one gets

u = ± cos(x − c3)

√
c1e−c2

2
− x tan(x − c3) − ln | cos(x − c3)|.

This solution depends on 3 arbitrary constants, but of course one of them is inessential. In
fact, by suitably rearranging constants ci’s, one can write this solution in the form

u = ± cos(x − C2)
√

C1 − x tan(x − C2) − ln(cos(x − C2)), C1, C2 ∈ R. (4.4)

This way we obtain the most general solutions which lie on E+ = M1 ∩ {u > 0} and
E− = M1 ∩ {u < 0}.

Solutions (4.4) are generic in the sense that they do not intersect the submanifold Γ.
Special solutions which intersect Γ, if any, should be computed by using a different solvable
structure. However, by using a different integration procedure [22], one can show that there
are no special solutions and indeed (4.4) is the general integral of (4.1).
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Example 2. Consider the ODE E defined by

u2 =
u2

1

u
+ ex u1

u
+ xu − ex, (4.5)

where u �= 0. Equation (4.5) has no point symmetries but admits an exponential nonlocal
symmetry in the λ-covering with λ = ex/u. In fact, by considering the covering system E ′

defined by (4.5) together with w1 = λ, one gets a symmetry Y generated by ϕ1 = −uew

and ϕ2 = ew. Here we use a solvable structure to get the complete integration of (4.5).

Examples of solvable structures {Y1, Y2, Y3} which extend the nonabelian algebra G =
〈Y1 = Y, Y2 = ∂w〉 can be easily computed by solving the determining equations LY3(D2) ⊂
D2. In this case we will just use the one defined by

Y3 =
u2

2(u1 + ex)
∂u − u

u1 + ex
∂w.

Since {Y1, Y2, Y3} is a solvable structure only at points of E which do not belong to the
submanifold Γ defined by u1 + eu = 0, our computation are limited to the submanifold
M1 = E\Γ. Here, one finds that ω3 = dI3 with

I3 = −2u1

u
− 2ex

u
+ x2.

Then, on the level manifolds M2 = M1 ∩{I3 = c3}, ω1 is an exact 1-form and one gets that
ω2 = dI2 with

I2 = −w − ln |u| + x3

6
− c3x

2
.

Finally, on M3 = M2 ∩ {I3 = c3, I2 = c2}, one has ω1 = dI1 with

I1 = exp
(
−1

6
x3 +

1
2
c3x + c2

)
u +

∫
exp

(
x − 1

6
x3 +

1
2
c3x + c2

)
dx.

Hence, under above assumptions, the generic solution of (4.5) can be written in the form

u = −

∫
exp

(
x − 1

6
x3 +

1
2
Cx

)
dx

exp
(
−1

6
x3 +

1
2
Cx

) , C ∈ R

where we have absorbed an arbitrary constant in the indefinite integral and conveniently
rearranged the remaining one.

Example 3. Consider the ODE E defined by

u2 = euu1 + x. (4.6)

Even though (4.6) can be easily reducible, since it can be written in the form

Dx

(
u1 − eu − x2

2

)
= 0,

one can easily check that (4.6) has no point symmetries. Equation (4.6), however, admits an
exponential nonlocal symmetry in the λ-covering with λ = eu. In fact, by considering the
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covering system E ′ defined by (4.6) together with w1 = λ, one gets a symmetry Y generated
by ϕ1 = ew and ϕ2 = ew. Here we use a solvable structure to get the complete integration
of (4.6).

Examples of solvable structures {Y1, Y2, Y3} which extend the nonabelian algebra G =
〈Y1 = Y, Y2 = ∂w〉 can be easily computed by solving the determining equations LY3(D2) ⊂
D2. In this case we will just use the one globally defined by

Y3 = ∂u1 .

Using this structure, one finds that ω3 = dI3 with

I3 = u1 − x2

2
− eu.

Then, on the submanifolds {I3 = c3}, one gets that ω2 = dI2 with

I2 = u − w − x3

6
− c3x.

Finally, on the submanifolds {I3 = c3, I2 = c2}, ω1 = dI1 with

I3 = exp
(
−u +

x3

6
+ c3x + c2

)
+

∫
exp

(
x3

6
+ c3x + c2

)
dx.

Hence, the general solution of (4.6) can be written in the form

u =
x3

6
+ Cx − ln

(
−

∫
exp

(
x3

6
+ Cx

)
dx

)
, C ∈ R

where we have absorbed an arbitrary constant in the indefinite integral and conveniently
rearranged the remaining one.

Example 4. Consider the ODE E defined by

u2 = (eu + 1)u1 − eu + x. (4.7)

Equation (4.7) has no point symmetries but admits an exponential nonlocal symmetry in
the λ-covering with λ = eu. In fact, by considering the covering system E ′ defined by (4.7)
together with w1 = λ, one gets a symmetry Y generated by ϕ1 = ew and ϕ2 = ew. Here we
use a solvable structure to get the complete integration of (4.7).

Examples of solvable structures {Y1, Y2, Y3} which extend the nonabelian algebra G =
〈Y1 = Y, Y2 = ∂w〉 can be easily computed by solving the determining equations LY3(D2) ⊂
D2. In this case we will just use the one globally defined by

Y3 = ex−u∂u.

Using this structure, one finds that ω3 = dI3 with

I3 = e−x(eu − 1 − x − u1).
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Then, on the submanifolds {I3 = c3}, one gets that ω2 = dI2 with

I2 = u − w + x +
x2

2
+ exc3.

Finally, on the submanifolds {I3 = c3, I2 = c2}, ω1 = dI1 with

I3 = exp
(
−u − x − x2

2
− c3e

x + c2

)
+

∫
exp

(
−x − x2

2
− c3e

x + c2

)
dx.

Hence, the general solution of (4.7) can be written in the form

u = −x − x2

2
− Cex − ln

(
−

∫
exp

(
−x − x2

2
− Cex

)
dx

)
, C ∈ R

where we have absorbed an arbitrary constant in the indefinite integral and conveniently
rearranged the remaining one.

Example 5. Consider the ODE E defined by

u2 =
u2

1

u
+ u1

(
x

u3
+

1
x

)
+ xu, (4.8)

where xu �= 0. Equation (4.8) has no point symmetries but admits an exponential nonlocal
symmetry in the λ-covering with λ = x/u3. In fact, by considering the covering system E ′

defined by (4.8) together with w1 = λ, one gets a symmetry Y generated by ϕ1 = −uew/3
and ϕ2 = ew. Here we use a solvable structure to get the complete integration of (4.8).

Examples of solvable structures {Y1, Y2, Y3} which extend the nonabelian algebra G =
〈Y1 = Y, Y2 = ∂w〉 can be easily computed by solving the determining equations LY3(D2) ⊂
D2. In this case we will just use the one globally defined by

Y3 = xu∂u1 .

Using this structure, one finds that ω3 = dI3 with

I3 =
u1

xu
− x +

1
3u3

.

Then, on the submanifolds {I3 = c3}, one gets that ω2 = dI2 with

I2 = −w − 3 ln |u| + x3 +
3
2
c3x

2.

Finally, on the submanifolds {I3 = c3, I2 = c2}, ω1 = dI1 with

I1 = u3 exp
(
−x3 − 3

2
c3x

2 + c2

)
+

∫
exp

(
−x3 − 3

2
c3x

2 + c2

)
xdx.

Hence, the general solution of (4.8) can be written in the form

u = −
[
exp

(
−x3 − 3

2
Cx2

)(∫
exp

(
−x3 − 3

2
Cx2

)
xdx

)]1/3

, C ∈ R

where we have absorbed an arbitrary constant in the indefinite integral and conveniently
rearranged the remaining one.
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Example 6. Consider the ODE E defined by

u2 = (xu1 − xu2 + u2)e−1/u +
2u2

1

u
+ u1, (4.9)

where u �= 0. It can be shown that (4.9) has no point symmetries but admits an exponential
nonlocal symmetry in the λ-covering with λ = xe−1/u − 1/x. In fact, by considering the
covering system E ′ defined by (4.9) together with w1 = λ, one gets a nonlocal symmetry Y

generated by ϕ1 = ew and ϕ2 = ew. Here we use a solvable structure to get the complete
integration of (4.9).

Examples of solvable structures {Y1, Y2, Y3} which extend the nonabelian algebra G =
〈Y1 = Y, Y2 = ∂w〉 can be easily computed by solving the determining equations LY3(D2) ⊂
D2. In this case we will just use the one globally defined by

Y3 = u2ex∂u1 .

Using this structure, and proceeding like in the previous examples, one finds that the general
solution of (4.9) can be written in the form

u =
1

Cex + ln
(∫ −x

eCex dx

) , C ∈ R

where we have absorbed an arbitrary constant in the indefinite integral and conveniently
rearranged the remaining one.

Example 7. Consider the ODE E defined by

u2 = −x

u
u1 − x2

u
+ xu − 1, (4.10)

where u �= 0. Equation (4.10) has no point symmetries but admits an exponential nonlocal
symmetry in the λ-covering with λ = x/u. In fact, by considering the covering system E ′

defined by (4.10) together with w1 = λ, one gets a symmetry Y generated by ϕ1 = −uew

and ϕ2 = ew.

In this case, equations LY3(D2) ⊂ D2 admit particular solutions in terms of Airy func-
tions Ai(x) and Bi(x), which form a pair of linearly independent solutions of the ODE
w′′ + xw = 0 (see [3]). For example, a solvable structure {Y1, Y2, Y3} which extends the
nonabelian algebra G = 〈Y1 = Y, Y2 = ∂w〉 is that defined by

Y3 =
(Ai(1, x)u − (u1 + x)Ai(x))2

u(−Ai(x)Bi(1, x) + Bi(x)Ai(1, x))2
∂u1 +

2Ai(x)(Ai(1, x)u − (u1 + x)Ai(x))
u(−Ai(x)Bi(1, x) + Bi(x)Ai(1, x))2

∂w.

where Ai(1, x) and Bi(1, x) denote first order derivatives D(Ai)(x) and D(Bi)(x), respec-
tively. Using such a solvable structure, however, ω3 is hardly integrable. That is why we
will follow a different approach.

As already remarked in Proposition 3, in the reduction of integrable distributions one
can take advantage of joint scalar invariants. This example can be used to clarify this point.
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To this end we will make the following particular choice of a joint differential invariant

I =
−Bi(1, x)u + (u1 + x)Bi(x)
Ai(1, x)u − (u1 + x)Ai(x)

for {D̃x, Y1, Y2}. Then we will show that, with the only exception of a closed thin subset,
on the level sets of I the restriction of {Y1, Y2} form a solvable structure for the (restricted)
one-dimensional distribution 〈D̃x〉. Therefore the solutions of the given ODE which are
in generic position can be described by the whole collection of generic solutions on each
level set.

The level sets Σ̄c := {I = c: c ∈ R} are well defined on M1 = E\Γ, with Γ the submanifold
of E defined by condition Ai(1, x)u− (u1 +x)Ai(x) = 0. We denote by Σ′

c the submanifolds
of Σ̄c defined by Bi(x)+ cAi(x) = 0. On each Σc = Σ̄c\Σ′

c one can write u1 in the following
form

u1 =
Bi(1, x)u − Bi(x)x + cAi(1, x)u − cAi(x)x

Bi(x) + cAi(x)

and the restrictions D̃c
x = D̃x|Σc admit {Y c

1 = Y1|Σc , Y
c
2 = Y2|Σc} as a solvable structure

defined on the whole Σc. Then, if on Σc we use the volume form Ω̄ = dx ∧ du ∧ dw and
define

Δ̄ = Y c
1 �Y c

2 �D̃c
x�Ω̄, ω̄1 = Y c

2 �D̃c
x�Ω̄ ω̄2 = Y c

1 �D̃c
x�Ω̄,

one gets that ω̄2 = dI1 with

I1 = w + ln |u| − ln |Bi(x) + cAi(x)|.
Moreover, a further restriction to the level sets Σc,h1 = {I1 = h1:h1 ∈ R} ∩Σc, entails that
ω̄1|Σc,h1

is the exterior derivative of

I2 =
ue−h1

Bi(x) + cAi(x)
+ e−h1

∫
x

Bi(x) + cAi(x)
dx.

These computations give the generic solutions on each Σc in the implicit form {I1 = h1, I2 =
h2}, with h1, h2 ∈ R. Hence, by collecting all these solutions and writing them explicitly,
one finally gets the following family of generic solutions

u = −(Bi(x) + CAi(x))
∫

x

Bi(x) + CAi(x)
dx,

with C ∈ R.

Example 8. Consider the ODE E defined by

u2 = − u1

x + u
+ x(x + u) − 2

x + u
, (4.11)

with x+u �= 0. Equation (4.11) has no point symmetries but admits an exponential nonlocal
symmetry in the λ-covering with λ = 1/(x+u). In fact, by considering the covering system
E ′ defined by (4.11) together with w1 = λ, one gets a symmetry Y generated by ϕ1 =
−(x + u)ew and ϕ2 = ew.
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As in the previous example, equations LY3(D2) ⊂ D2 admit particular solutions in terms
of Airy functions and we will use joint scalar invariants of {D̃x, Y1, Y2} to describe a family
of generic solutions.

Here we use the following joint invariant

I =
(−x − u)Bi(1, x) + (2 + u1)Bi(x)
(x + u)Ai(1, x) − (2 + u1)Ai(x)

.

In this case, the level sets Σ̄c := {I = c: c ∈ R} are well defined on M1 = E\Γ, with Γ the
submanifold of E defined by condition (x + u)Ai(1, x) − (2 + u1)Ai(x) = 0. We denote by
Σ′

c the submanifolds of Σ̄c defined by Bi(x) + cAi(x) = 0. On each Σc = Σ̄c\Σ′
c one can

write u1 in the following form

u1 =
(x + u)(cAi(1, x) + Bi(1, x)) − 2(cAi(x) + Bi(x))

Bi(x) + cAi(x)

and the restrictions D̃c
x = D̃x|Σc admit {Y c

1 = Y1|Σc , Y
c
2 = Y2|Σc} as a solvable structure

defined on the whole Σc. Then, if on Σc we use the volume form Ω̄ = dx ∧ du ∧ dw and
define

Δ̄ = Y c
1 �Y c

2 �D̃c
x�Ω̄, ω̄1 = Y c

2 �D̃c
x�Ω̄ ω̄2 = Y c

1 �D̃c
x�Ω̄,

one gets that ω̄2 = dI1 with

I1 = w + ln |x + u| − ln |Bi(x) + cAi(x)|.
Moreover, a further restriction to the level sets Σc,h1 = {I1 = h1: h1 ∈ R} ∩Σc, entails that
ω̄1|Σc,h1

is the exterior derivative of

I2 =
ue−h1

Bi(x) + cAi(x)
+ e−h1

∫
2(Bi(x) + cAi(x)) − x(Bi(1, x) + cAi(1, x))

(Bi(x) + cAi(x))2
dx.

These computations give the generic solutions on each Σc in the implicit form {I1 = h1, I2 =
h2}, with h1, h2 ∈ R. Hence, by collecting all these solutions and writing them explicitly,
one finally gets the following family of generic solutions for

u = −(Bi(x) + CAi(x))
∫

2(Bi(x) + CAi(x)) − x(Bi(1, x) + CAi(1, x))
(Bi(x) + CAi(x))2

dx

with C ∈ R.
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